CD54ACT163, CD74ACT163 4-BIT SYNCHRONOUS BINARY COUNTERS

SCHS300B - APRIL 2000 - REVISED MARCH 2003

- Inputs Are TTL-Voltage Compatible
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable

description/ordering information

The 'ACT163 devices are 4-bit binary counters. These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change, coincident with each other, when instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with synchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform.

The counters are fully programmable; that is, they can be preset to any number between 0 and 9 or 15. Presetting is synchronous; therefore, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.
The clear function is synchronous. A low level at the clear ($\overline{\mathrm{CLR}})$ input sets all four of the flip-flop outputs low after the next low-to-high transition of CLK, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to $\overline{C L R}$ to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. ENP, ENT, and a ripple-carry output (RCO) are instrumental in accomplishing this function. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a high-level pulse while the count is maximum (9 or 15 , with Q_{A} high). This high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

These devices feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or $\overline{\text { LOAD }}$) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.

ORDERING INFORMATION

$T_{\mathbf{A}}$	PACKAGEt		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP - E	Tube	CD74ACT163E	CD74ACT163E
	SOIC - M	Tube	CD74ACT163M	ACT163M
		Tape and reel	CD74ACT163M96	
	CDIP -	Tube	CD54ACT163F3A	CD54ACT163F3AA

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE

INPUTS						OUTPUTS		FUNCTION
$\overline{\mathrm{CLR}}$	CLK	ENP	ENT	$\overline{\text { LOAD }}$	A,B,C,D	Q_{n}	RCO	
L	\uparrow	X	X	X	X	L	L	Reset (clear)
h	\uparrow	X	X	I	1	L	L	
h	\uparrow	X	X	1	h	H	Note 1	Parallel load
h	\uparrow	h	h	h	X	Count	Note 1	Count
h	X	I	X	h	X	q_{n}	Note 1	Inhibit
h	X	X	1	h	X	q_{n}	L	

$H=$ high level, $L=$ low level, $X=$ don't care, $h=$ high level one setup time prior to the CLK low-to-high transition, $I=$ low level one setup time prior to the CLK low-to-high transition, $q=$ the state of the referenced output prior to the CLK low-to-high transition, and $\uparrow=$ CLK low-to-high transition.
NOTE 1: The RCO output is high when ENT is high and the counter is at terminal count (HHHH).
logic diagram (positive logic)

\dagger For simplicity, routing of complementary signals $\overline{\mathrm{LD}}$ and $\overline{\mathrm{CK}}$ is not shown on this overall logic diagram. The uses of these signals are shown on the logic diagram of the D/T flip-flops.

4-BIT SYNCHRONOUS BINARY COUNTERS

SCHS300B - APRIL 2000 - REVISED MARCH 2003
logic symbol, each D/T flip-flop

logic diagram, each D/T flip-flop (positive logic)

\dagger The origins of $\overline{\mathrm{LD}}$ and $\overline{\mathrm{CK}}$ are shown in the logic diagram of the overall device.

typical clear, preset, count, and inhibit sequence

The following sequence is illustrated below:

1. Clear outputs to zero (synchronous)
2. Preset to binary 12
3. Count to $13,14,15,0,1$, and 2
4. Inhibit

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Output clamp current, } \mathrm{I}_{\mathrm{OK}}\left(\mathrm{~V}_{\mathrm{O}}<0 \text { or } \mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}\right) \text { (see Note } 2 \text {) . } \pm 50 \mathrm{~mA} \\
& \text { Continuous output current, } \mathrm{I}_{\mathrm{O}}\left(\mathrm{~V}_{\mathrm{O}}=0 \text { to } \mathrm{V}_{\mathrm{CC}}\right) \text {. } \pm 50 \mathrm{~mA} \\
& \text { Continuous current through } V_{C C} \text { or GND . } \pm 100 \mathrm{~mA} \\
& \text { Package thermal impedance, } \theta_{J A} \text { (see Note 3): E package . } 67^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { M package } 73^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \text {. }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. } \\
& \text { 3. The package thermal impedance is calculated in accordance with JESD 51-7. }
\end{aligned}
$$

recommended operating conditions (see Note 4)

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	UNIT	
			MIN MAX	MIN MAX	MIN MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{IOH}=-50 \mu \mathrm{~A}$		4.5 V	4.4	4.4	4.4	V
		$\mathrm{OH}=-24 \mathrm{~mA}$	4.5 V	3.94	3.7	3.8		
		$\mathrm{I}^{\mathrm{OH}}=-50 \mathrm{mAt}$	5.5 V	-	3.85	-		
		$\mathrm{IOH}^{\prime}=-75 \mathrm{mAt}$	5.5 V	-	-	3.85		
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{l} \mathrm{OL}=50 \mu \mathrm{~A}$	4.5 V	0.1	0.1	0.1	V	
		$\mathrm{IOL}=24 \mathrm{~mA}$	4.5 V	0.36	0.5	0.44		
		$\mathrm{l} \mathrm{OL}=50 \mathrm{~mA} \dagger$	5.5 V	-	1.65	-		
		$\mathrm{IOL}=75 \mathrm{~mA} \dagger$	5.5 V	-	-	1.65		
1	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND		5.5 V	± 0.1	± 1	± 1	$\mu \mathrm{A}$	
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND,	$10=0$	5.5 V	8	160	80	$\mu \mathrm{A}$	
$\Delta_{\text {cc }}{ }^{\ddagger}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$		$\begin{gathered} \hline 4.5 \mathrm{~V} \text { to } \\ 5.5 \mathrm{~V} \end{gathered}$	2.4	3	2.8	mA	
C_{i}				10	10	10	pF	

\dagger Test one output at a time, not exceeding 1-second duration. Measurement is made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum $50-\Omega$ transmission-line drive capability at $85^{\circ} \mathrm{C}$ and $75-\Omega$ transmission-line drive capability at $125^{\circ} \mathrm{C}$.
\ddagger Additional quiescent supply current per input pin, TTL inputs high, 1 unit load

ACT INPUT LOAD TABLE

INPUT	UNIT LOAD
$\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D	0.13
CLK	1
$\overline{\mathrm{CLR}, \mathrm{ENT}}$	0.83
$\overline{\mathrm{LOAD}}$	0.67
ENP	0.5

Unit Load is $\mathrm{II}_{\mathrm{CC}}$ limit specified in electrical characteristics table (e.g., 2.4 mA at $25^{\circ} \mathrm{C}$).
timing requirements over recommended operating conditions (unless otherwise noted)

		$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$		UNIT
		MIN	MAX	MIN	MAX	
Clock frequency			80		91	MHz
$\mathrm{t}_{\mathrm{w}} \quad$ Pulse duration	CLK high or low	6.2		5.4		ns
$t_{\text {su }} \quad$ Setup time, before CLK \uparrow	A, B, C, or D	5		4.4		ns
	ENP or ENT	6		5.3		
	$\overline{\text { LOAD }}$ low	7.5		6.6		
	$\overline{\mathrm{CLR}}$ inactive	7.5		6.6		
th Hold time, after CLK \uparrow	A, B, C, or D	0		0		ns
	ENP or ENT	0		0		
	$\overline{\text { LOAD }}$ low	0		0		
	$\overline{\mathrm{CLR}}$ inactive	0		0		

4-BIT SYNCHRONOUS BINARY COUNTERS

SCHS300B - APRIL 2000 - REVISED MARCH 2003
switching characteristics over recommended operating conditions, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$		UNIT
			MIN	MAX	MIN	MAX	
${ }_{\text {max }}$			80		91		MHz
$t_{\text {tpd }}$	CLK	RCO	4.2	16.7	4.3	15.2	ns
		Any Q	4.1	16.5	4.2	15	
	ENT	RCO	2.7	10.8	2.8	9.8	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	TYP
UNIT			
$\mathrm{C}_{\mathrm{pd}} \quad$ Power dissipation capacitance	No load	66	pF

PARAMETER MEASUREMENT INFORMATION

NOTE: When $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \mathrm{R} 1$ and $\mathrm{R} 2=1 \mathrm{k} \Omega$.
LOAD CIRCUIT

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
RECOVERY TIME

Figure 1. Load Circuit and Voltage Waveforms

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A). D. The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G**)
8 PINS SHOWN

PIMS	8	14	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
	0.189	0.337	0.386
	$(4,80)$	$(8,55)$	$(9,80)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

